

Thermodynamics of Energy Conversion and Storage

Prof. Dr. Andreas ZÜTTEL

Assistant: Youngdon Ko, Henglu Xu

EXERCISES 2

1) Calculate the average power per capita if the world primary energy demand is $170 \cdot 10^{12}$ kWh a⁻¹ (7.5*10⁹ people).

$$P = 170 \cdot 10^{12} \text{ kWh a}^{-1} / 7.5 \cdot 10^9 / (365 \cdot 24h) \cdot a = 2.6 \text{ kW/capita}$$

2) Calculate the economic benefit of 1 kWh of available energy.

In the linear region of the curve:

20'000 US\$/capita/year corresponds to 50 MWh/capita/year

$$20'000 / 50'000 \text{ US\$/kWh} = 0.4 \text{ US\$/kWh}$$

3) Estimate the world energy demand in 2050. What will be the average power per capita? Population increases to from $6 \cdot 10^9$ to $11 \cdot 10^9$

Energy consumption 2016: $(2 \cdot 0.25 + 2 \cdot 0.5 + 1 \cdot 4 + 1 \cdot 8) / 6 = 13.5 / 6 = 2.25 \text{ kW/capita}$

Energy consumption 2050: $(2 \cdot 0.25 + 3 \cdot 0.5 + 3 \cdot 4 + 3 \cdot 8) / 11 = 38 / 11 = 3.45 \text{ kW/capita}$

The energy consumption will increase from $13.5 \cdot 10^9 \text{ kW}$ today to $38 \cdot 10^9 \text{ kW}$ in 2050

4) Calculate the population development when the birth rate is 2 kids per woman and the death rate is 1%.

$$dN/dt = +N/2 \cdot 0.02 - N \cdot 0.01$$

$$dN/N = (0.02/2 - 0.01) \cdot dt$$

$$\ln(N) = a \cdot t + C \quad (a=0)$$

The population remains constant.

5) Locate an average Swiss student and an EPFL Professor in the global wealth distribution.

An average Swiss student has about 3000.-/month available that corresponds to approx. 100 \$ / day. This is in the top 5% of the world.

A full Professor at EPFL has a salary of around 20'000.-/month that corresponds to approx. 715.- / day. This is in the top <1% of the world.